Universal properties of kernel functions for probabilistic sensitivity analysis
نویسنده
چکیده
Development of probabilistic sensitivities is frequently considered an essential component of a probabilistic analysis and often critical towards understanding the physical mechanisms underlying failure and modifying the design to mitigate and manage risk. One useful sensitivity is the partial derivative of the probability-of-failure and/or the system response with respect to the parameters of the independent input random variables. Calculation of these partial derivatives has been established in terms of an expected value operation (sometimes called the score function or likelihood ratio method). The partial derivatives can be computed with typically insignificant additional computational cost given the failure samples and kernel functions — which are the partial derivatives of the log of the probability density function (PDF) with respect to the parameters of the distribution. The formulation is general such that any sampling method can be used for the computation such as Monte Carlo, importance sampling, Latin hypercube, etc. In this paper, useful universal properties of the kernel functions that must be satisfied for all two parameter independent distributions are derived. These properties are then used to develop distribution-free analytical expressions of the partial derivatives of the response moments (mean and standard deviation) with respect to the PDF parameters for linear and quadratic response functions. These universal properties can be used to facilitate development and verification of the required kernel functions and to develop an improved understanding of the model for design considerations. c © 2008 Elsevier Ltd. All rights reserved.
منابع مشابه
A System of Multivariable Krawtchouk Polynomials and a Probabilistic Application
Abstract. The one variable Krawtchouk polynomials, a special case of the 2F1 function did appear in the spectral representation of the transition kernel for a Markov chain studied a long time ago by M. Hoare and M. Rahman. A multivariable extension of this Markov chain was considered in a later paper by these authors where a certain two variable extension of the F1 Appel function shows up in th...
متن کاملAn Empirical Study on The Properties of Random Bases for Kernel Methods
Kernel machines as well as neural networks possess universal function approximation properties. Nevertheless in practice their ways of choosing the appropriate function class differ. Specifically neural networks learn a representation by adapting their basis functions to the data and the task at hand, while kernel methods typically use a basis that is not adapted during training. In this work, ...
متن کاملRemote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery
Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...
متن کاملA GMM-based probabilistic sequence kernel for speaker verification
This paper describes the derivation of a sequence kernel that transforms speech utterances into probabilistic vectors for classification in an expanded feature space. The sequence kernel is built upon a set of Gaussian basis functions, where half of the basis functions contain speaker specific information while the other half implicates the common characteristics of the competing background spe...
متن کاملA comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater
The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015